数学历史故事:中国作为四大文明古国之一,在漫漫历史长河中,中国先辈们发挥自己的才智,为推动历史发展做出了的重大的贡献,今天就和极客数学帮一起来看看中国发展史中数学的全盛时期。
隋以前,学校里的教育并不重视数学,因此,没有数学专业一说。而到了隋朝,这一局面被打破了,在相当于大学的学校里,开始设置算学专业。到了唐朝,最高学府国子监,还添设了算学馆,其中博士、助教一应俱全,专门培养数学人才。这时,数学教育的受重视,还反映到了选官问题上。
据古书《唐阙史》记载,有这么一个故事:唐代有个大官,名叫杨损。他让手下的人推荐一个优秀的办事员加以提升。手下的人经过千筛百选,最后剩下两个人时,拿不定去掉哪一位好。因为这两个办事员各方面的条件太一样了:职位相同,“工龄”一样,评语类似……选谁好呢?没办法,只好把矛盾上交了。杨损得知这个消息之后,也费了不少心思,斟酌再三,最后决定出一道数学题来考考他们。他对这两位候选人说:“作为办事员,职业决定你们应该有算得快的能力,我出一道题,谁先答对就提升谁。”后来,先答对的人,理所当然地得到了升迁,而另一个人也心悦诚服地回到了原位。由此可见,唐代对数学的重视程度。
有了数学专业。就少不了好教材。这个时期,有唐朝数学家李淳风(?~公元714年)等人奉政府的命令,经过研读、筛选,规定出了国子监算馆专用教科书。这套教科书名叫《算经十书》,全套共十部:《周髀算经》、《九章算经》、《孙子算经》、《五曹算经》、夏侯阳算经》、《张丘建算经》、《海岛算经》、《五经算术》、《缀术》和《缉古算经》。
对这套专业教材,国子监还规定了学习年限,建立了每月一考的制度。数学教育从这时开始走向逐步完善。
在日趋完善的数学教育制度下,涌现出了一代名垂青史的数学泰斗,他们是:王孝通、刘焯、一行、沈括、李冶、贾宪、杨辉、秦九韶、郭守敬、朱世杰……
这些人为数学的发展做出了不可磨灭的贡献,如:
王孝通:毕生喜好数学,对《九章算术》,和祖冲之的《缀术》都有深入研究,在《上缉古算术表》一文中,对《九章算术》和《缀术》的不足之处,都提出过批评。著有《缉古算经》,在世界上最早提出三次方程式及其解法,唐代为算经十书之一,为国子监的算学课本,对后世有深远影响。
沈括:沈括的隙积术和会圆术在数学历史上都有着重要的地位,
隙积术指如何计算垛积,沈括运用类比、归纳的方法,以体积公式为基础,把求解不连续个体的累积数,化为连续整体数值来求解,已具有了用连续模型解决离散问题的思想。在中国国数学史上,发展了自南北朝时期就停滞不前的等差级数求和问题,并推进到高阶等差级数求和的新阶段,开创了中国垛积术研究的先河。南宋数学家杨辉、元朝数学家朱世杰,在沈括的基础上进一步研究,取得了令世人瞩目的成就。
会圆术,实际上是指由弦求弧的方法,其主要思路是局部以直代曲,对圆的弧矢关系给出一个比较实用的近似公式。在中国数学史上,沈括第一个利用弦、矢求出了孤长的近似值。这一方法的创立,不仅促进了平面几何的发展,而且在天文计算中也起了重要的作用,为中国球面三角学的发展作出了重要贡献。会圆术问世后,得到了广泛应用,郭守敬、王恂等都用到过会圆术。
科学历来是全人类共同的财富,当时中国的数学水平很快引起了朝鲜、日本的注意,他们开始往中国派留学生、书商。经过一段学习,在算法引进了关于田亩、交租、谷物交换等知识;在办学中吸取了国子监的课程设置和考试制度。由此看来,在这一阶段,我国已处于世界数学发展的潮头了。
在此之后,中国数学进入了缓慢发展时期。这段时间西方数学发展迅速,于是中国数学发展历史上出现了一个中西数学发展的合流期。
19世纪60年代开始,曾国藩、李鸿章等为了维护腐败的清政府,发起了“洋务运动”。这时以李善兰、徐寿、华蘅芳为代表的一批知识分子,作为数学家、科学家和工程师参加了引进西学、兴办工厂、学校等活动,经过他们的不懈努力,奠定了近代科技、近代数学在中国的发展基础。当1894年“洋务运动”以军事失败而告终时,工厂、铁路、学校却保留了下来,科技知识也在一定的范围内传播了开来。
这一时期的特点是中西合流。所谓中西合流,并不是全盘西化,数学工作者们在研究传统数学的同时吸收新的方法,一时间,出现了人才济济、著述如林的好势头。这时,中国数学家在幂级数、尖锥术等方面已独立地得到了一些微积分成果,在不定分析和组合分析方面也获得了出色的成绩。然而,即使是这样,在世界的同行们之中,中国也仍然没达到领先的地位。
以上就是极客数学帮整理的有关于数学历史故事:中国数学的全盛时期的全部内容了。
标签: 数学历史故事